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Recently, the author has introduced a numerical method to deal with the propagation of 
surface water waves in the framework of the linear theory for an inviscid fluid and simple har- 
monic motion. The method, based on a finite element scheme, relies on the use of an original 
series expansion technique of the involved unknown fields to compute the element equations. 
In this work the effects of some improvements of the method are presented. Some examples 
show that the method can be applied to the propagation of short waves in very large regions 
of sea, equal to several hundreds of square wavelengths, where various diffraction, refraction, 
and reflection phenomena can interact simultaneously in a complicated way. 0 1986 Academic 

Press. Inc. 

1. INTRODUCTION 

The numerical models dealing with the propagation of surface water waves in 
cases in which the diffraction and multiple reflection phenomena are predominant 
are mainly based on the so-called “mild-slope equation” introduced by Berkhoff 
[ 1 ] and Smith and Sprinks [2], also capable of considering refraction phenomena, 
provided the slope of the bottom is sufficiently small. This equation applies to small 
amplitude waves in an inviscid fluid, when the motion is assumed to be irrotational 
and harmonic in time, so that it can be used in a large variety of problems, like the 
diffraction of waves by a submerged shoal or by a breakwater, or to the wave- 
induced oscillations in a harbor basin. 

The possibilities of the numerical approximations of this equation, however, are 
limited. In fact, whatever the assumed discretization process, the continuous 
original equation is reduced to the solution of a system of algebraic equations, 
whose dimension increases with the size of the region of sea to be modelled. Since a 
matrix cannot be inverted beyond certain limits, related to the possibilities of 
present-day computers, it follows that the discretized area of sea cannot exceed a 
certain number of square wavelengths. For this reason the equation is generally 
used only for problems defined in regions of at most a few dozen square 
wavelengths [3,4], or as a basis to deduce parabolic approximations [IS, 63, in 
which the assumption is made that the wave propagation occurs mainly in a well 
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defined direction. In principle the equation might be solved even in larger regions of 
sea, but at the expense of a remarkable amount of computational effort. We remem- 
ber that the memory area and the computer time required in the inversion, of a 
matrix grow with the square and the cube of its dimensions, respectively. 

Recently, Mattioli [7] has devised a new kind of technique, based on a finite 
element scheme, in which the original domain is subdivided into elements of 
arbitrary shape and size, while being of constant depth. Inside each element the 
unknown field is expanded in terms of particular solutions of the Helmholtz 
equation, while along the sides of the elements it is expanded in terms of Legendre 
polynomials. Such a procedure allows one to use few parameters to describe a 
wavelength, so that it is possible to consider the wave propagation in domains of 
large extension, of the order of several hundreds of square wavelengths, using only 
a few thousands of unknowns. The possibilities of the method have suggested con- 
tinuing the analysis of its properties. The present study shows that most of the 
numerical problems pointed out in [7] have been solved and that the performance 
of the method is even better than one could have expected. 

2. THE ORIGINAL EQUATIONS 

The linear theory for an inviscid fluid and irrotational motion reduces the 
evaluation of the quantities of interest, that is, the surface wave elevation and the 
velocity field, to the evaluation of the potential field @(x, y, z, t). For 
monochromatic waves and constant depth, the potential field can be factorized as 
follows 

@(x, y, Z, t) = q(x, y) Z(z) e-'"', 

where cp(x, y) is the value of potential at the free surface, and Z(z) is the vertical 
behavior 

Z(z) = 
cash k(h + z) 

cash kh ’ 

where h is the depth and k the wavenumber. On the other hand, the potential cp 
satisfies the Helmholtz equation 

V2q+k2q=0 (2.1) 

with boundary conditions of zero normal derivative along the solid contours of the 
domain and suitable radiation conditions at infinity. 

When the depth in the original problem is variable, it is necessary to subdivide 
the whole domain into elements, in each of which the depth is assumed to be con- 
stant. Then, inside the elements (2.1) will be supposed to be valid, while between 
the elements the continuity of the elevation field and the flux of the normal velocity 
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will be assumed. That is, if x represents the flux of the normal derivative of the 
potential field 

where 

b = I”, Z(z) dz, 

the conditions between two elements will read 

431=(P2, (2.2) 

Xl = -x2> (2.3) 

if the index 1 and 2 refer to two adjacent elements. 
The approximations (2.1 b(2.3) are certainly valid in the limit of long waves, and 

should still be a good representation of the reality for intermediate depth, provided 
the difference in depth between two adjacent elements is small, both with regard to 
the local depth and to the considered wavelength. Note, for example, that the 
model neglects the evanescent modes, so that abrupt changes of depth certainly 
cannot be taken into account. The topic is discussed in Mattioli [7], although a 
thorough study, stating the limits of these assumptions and a comparison with 
other possible matching conditions is still lacking. 

3. SOLUTION PROCEDURE 

Green’s functions theory applied to the Helmholtz equation in a domain of 
limited extension states that, except that in correspondence to the wavenumbers 
relative to the Neumann eigenfunctions, the normal derivative of the field and the 
field itself along the contour % of the domain can be related to each other by an 
integral equation. A similar relation holds for an unlimited domain, provided the 
field satisfies the Sommerfeld radiation condition at infinity and the contour % is 
the finite part of the boundary in which the normal derivative of the field is different 
from zero. In both cases, if 9(x, x0) is the Green’s function subject to Neumann 
boundary conditions, it can be written as follows 

where ‘pP represents the possible plane wave in an external element, with normal 
derivative equal to 0 along W, while q is 1 for external elements and 0 for internal 
elements. 
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If the analytical expression of the Green’s function of all the elements were 
known, then the solution procedure would be simple. In this case one can choose 
the flux x, suitably oriented along the various sides of the finite element network, as 
main unknown of the problem, and then write along the same sides the equations 
stating the identity of the elevation field when computed in two adjacent elements. 
Thus, it is possible to obtain a well-posed system of integral equations, that can be 
reduced to a system of algebraic equations, once discretized following whatever 
reasonable procedure. In turn, the solutions of this system can be inserted in the 
discrete versions of (3.1) to achieve an approximate version of the elevation field 
along the sides of the finite element mesh. 

The method of solution devised by Mattioli [7] provides an efficient tool to 
compute an approximate version of the Green’s function for elements of arbitrary 
shape and size. It relies on a series expansion of the internal field in terms of par- 
ticular solutions of the Helmholtz equation, which shows to be quickly convergent 
to the exact field. Furthermore, the surface potential field and its normal derivative 
are expanded along the contour of the elements in terms of Legendre polynomials, 
in such a way to keep the number of parameters needed to describe a wavelength as 
low as possible. 

Thus the solution of any problem is reduced to the evaluation of a discrete ver- 
sion of the continuous equations written for each element, after which the various 
element matrices and known-term vectors must be assembled to obtain the global 
system of equations in the same way followed in the traditional finite element 
method. More details of the procedure can be found in the quoted work [7]. 

4. THE METHOD OF NUMERICAL INTEGRATION 

By adopting the repeated mid-point rule to evaluate the various integrals present 
in the previously described formulation, the results show discontinuous, even 
divergent trends sometimes, near the ends of the sides of the finite element mesh. 
Moreover, by increasing the number of the integration intervals, these divergent 
trends do not disappear, but only reduce to narrower intervals. So, Mattioli [7] 
had to resort to hand-interpolation to obtain reliable results, while the suspicion of 
a nonuniform convergence of the method remained. 

It has been possible, however, to establish that such a behavior of the solution 
depends to large extent on the integration method used in the internal elements. In 
fact, by adopting the Gauss-Legendre method, with a sufficiently high number of 
sample points, the solutions become continuous and much more accurate than 
before. Furthermore, there is a not negligible saving of computational time, because 
the number of the times in which the Bessel functions or the Legendre polynomials 
must be evaluated in strongly reduced. 

However, once this drastic improvement has been obtained, some small discon- 
tinuities still remain at the ends of some sides belonging to the lines joining the 
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internal and half-plane elements, where the previous integration method was 
employed. For these elements, in fact, the Green’s function 

shows a logarithmic singularity for s -+ sO, so that Gauss-Legendre formulae cannot 
directly be applied. It is enough, however, to subtract the singularity, and then 
integrate it analytically. In essence, it is necessary to evaluate the following double 
integral [ 73 

I1 P,(s)ds f1 lgfls-s,l P,(s,)&= 
0 if n+m odd, 

(4.1) -I -1 c nm if n + m even, 

where P,(s) is the Legendre polynomial of order n. 
It has been found that c,, is a symmetric matrix of inverses of integer numbers, 

except coo= -6. In the Appendix some details are given about the computations 
which have been performed, along with the matrix of the numbers d,, = l/c,,,,. 

This modification leads to a further improvement of the results, which are now 
never discontinuous at any point of the lines of the finite element network. 

5. CRITICAL WAVENUMBERS 

It is known [7, 81 that two series of critical wavenumbers exist, corresponding to 
the Neumann and Dirichlet eigenfunctions of the element, for which the element 
equations no longer have a unique solution. For example, in a circular element of 
radius R the matrix W [7, Sect. 4; 8, Sect. 15.31 takes the form 

= +7t J,,(kR) kRYn(kR) a,,,,,, n, m = 0, l,..., 

if the solutions of the Helmholtz equation are ordered as follows 

J,,(kr), J,(kr) cos 8, J,(kr) sin 8 ,..., 

where J,,, n = 0, l,..., are the Bessel function of the first kind and order n, and Q, = 2, 
E, = 1, n > 0. 

Hence, the diagonal matrix W becomes singular in correspondence with the zeros 
of J,(kR) and JA(kR) that is, in correspondence with the two classes of eigen- 
functions previously quoted. The possibility of critical wavenumbers is completely 
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excluded only if the element is sufficiently small in comparison to the wavelength 
(in this case kR < 2.4). However, the convenience of an element increases with its 
size, so this property is not of great help. 

The results obtained in various general-purpose tests have shown that the error is 
a smooth function of the wavenumber, so that the typical divergent behaviors of the 
error in the neighborhood of the critical wavenumbers were not coming up. A more 
detailed analysis has been carried out for a square element with K= 6 parameters 
per side around 

ka = { (27~)~ + n’} 1’2 = 7.0248, 

that is, for the same critical wavenumber treated in [7]. In correspondence to this 
wavenumber we have two Neumann eigenfunctions with two nodal lines parallel to 
a side and one nodal line orthogonal to them, and two Dirichlet eigenfunctions 
with one internal nodal line parallel to a side. When the repeated mid-point rule is 
adopted as integration method, the error curve shows a divergent behavior around 
the critical wavenumbers, limited to the range 7.0247 < ka -C 7.0249, that is, to an 
interval equal to about 3. 10e5 times the wavenumber. With the more approximate 
Gauss-Legendre integration the deviation of the error of its ordinary value is 
negligible when a step equal to 10m4 is adopted. Hence, if critical wavenumber 
intervals exist, they are very narrow, and in any case they might be avoided by 
simply changing the considered wavelength by a small amount. 

Y 

x 

FIG. 1. Sketch of the channel connecting the sea to the lagoon, partially closed by a barrier. a is the 
angle of incidence of the plane wave coming from the sea. Both the sea and the lagoon are represented 
by half-plane domains subject to Sommerfeld radiation conditions. 
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6. WAVE PROPAGATION IN A DOMAIN OF LARGE EXTENSION 

An application of the method has been carried out for a problem of wave 
propagation in a layer of water of intermediate depth in a region of sea of large 
extension. This example is the same as the one considered in Mattioli [7], that is, a 
channel connecting the sea to a lagoon partially obstructed at the rear by a barrier 
(Fig. l), in order to make an evaluation of the obtained improvements possible. 
The waves coming from the sea, after being refracted by the variable bottom and 
reflected by the lateral walls of the channel and by the rear barrier, are partially dif- 
fracted towards the lagoon, and partially radiated towards the sea. Thus, the 
resulting field is a combination of different processes, that, in general, can be quan- 
titatively evaluated only by a numerical model. 

The channel width has been chosen as one-half of the length L, and the barrier 
closes the access to the lagoon for three quarters of the length. All the contours 
have been assumed to be perfectly reflective and the depth has been supposed to be 
constant, to allow a comparison with the practically exact results of Mattioli and 
Tinti [9]. 

To consider a wave for which kL = 250, that is of length equal to $ of the chan- 
nel width, the domain has been subdivided into 8 x 16 square elements, and 11 
unknown parameters have been attributed to each side. This means that each 
square element contains about 2.49 x 2.49 = 6.18 square wavelengths. Note that for 
L = 2 Km and ho = 10 m the wavelength is 50 m and the period about 6.16 s. The 
behavior of the modulus IAl of the amplification factor with regard to the 
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FIG. 2. Modulus of the amplification factor IAl along the line BD for a channel of constant depth, 
normal incidence and kL = 250. The continuous and dotted lines refer to the numerical and theoretical 
results, respectively. 
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B 

FIG. 3. Real (continuous line) and imaginary (dotted line) parts A, and A, of the amplification fac- 
tor along the channel wall A-E in the same conditions of Fig. 2. 

amplitude of the incoming wave along line B-D for a constant depth and normal 
incidence is shown in Fig. 2, and is compared with the exact solution. As can be 
seen the agreement is excellent, although fewer parameters (only 3080) have been 
used in comparison with Mattioli [7]. This means that only 3.85 parameters per 
square wavelength have been proved to be sufficient to obtain a very high accuracy 
in the results. We can recall that an extension of sea equal to 20 x 40 = 800 square 
wavelengths can be faced by the traditional finite element techniques only by the 
use of some dozen of thousands of nodal variables. 

To be aware of the kind of information that can be drawn by a program like this, 
the real and the imaginary parts A, and Ai of the amplification field along the walls 
A-B and C-D of the channel have been plotted in Fig. 3 and Fig. 4. In the former 

FIG. 4. As in Fig. 3, but with reference to the channel wall C-D. 
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FIG. 5. Real and imaginary parts of the amplification factor along A-B for a channel of variable 
depth, angle of incidence a = 22.5” and kL = 250. 

case it is possible to detect the typical behavior of a progressive wave from the sea 
to the lagoon, with the two components out of phase by 90”. In the latter the two 
components are in opposition of phase, indicating a standing wave between the 
barrier and the sea. The information is very detailed, and can be of great help when 
the dynamics of the wave motion is no longer so simple as in this case. 

In Fig. 5 and Fig. 6 the amplification fields along the same contours A-B and 
C-D are shown when the waves incide with an angle of 22.5” with regard to the 
axis of the channel and the depth is variable as in Mattioli [7, Eq. (5.1)]. Observe 
the different phase delays in the figures, indicating a wave mainly propagating from 
the sea to the lagoon in the former case, and in the opposite direction in the latter, 
as is foreseeable by elementary considerations. Instead, the intensity of the 
amplitude modulations, especially in the lower wall of the channel, are clearly not 
evaluable by other means than with a numerical model. 

A, 
A, 

2 

0 

-2 

-41"""""""' 1 
C D 

FIG. 6. The same as before, but along the wall C-D. 
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7. CONCLUSION 

The most striking result of the method presented here consists in the possibility 
of using a very small number of parameters to describe one wavelength. As a con- 
sequence, it is possible to consider phenomena of wave propagation in larger 
regions of sea, by an order of magnitude or more, than the ones considered by the 
known methods, when the same total number of variables is used, and further 
improvements are not to be excluded. In fact, with a CDC 7600, neither has the 
maximum memory area been occupied, nor has the computer time, which is of the 
order of 100 s in the largest applications essentially equally divided between the 
construction of the element matrices and the inversion of the global matrix, are 
prohibitive. Moreover, the program has not been completely optimized, although 
several contrivances have been employed, at least with regard to the previous ver- 
sion. 

The adoption of a more accurate integration rule makes the solution smooth in 
every point of the domain, so that the problem of discontinuous outputs pointed 
out in [7] is eliminated. Furthermore the method does not seem to be affected by 
the presence of critical wavenumbers, that do not give rise to detectable variations 
of the numerical error, at least when an adequate distribution of the parameters is 
adopted. In conclusion, we can say that the most important numerical problems set 
in Mattioli [7] have been satisfactorily solved. 

To sum up, the research performed so far shows that a very powerful numerical 
method for solving the Helmholtz equation has been devised, and that several 
developments, which will be considered in the near future, should be possible along 
this line of research. 

APPENDIX 

The kernel of the integral operator representing a half-plane element becomes 
singular in two circumstances: when s and s0 belong to the same side and s + s,,, 
and when s and s0 belong to adjacent sides, and both tend to the common vertex. 

Let us consider the first case. When n + m is odd, then (4.1) simplylies to 

2 J1 P,(s) ds IS lg i(s -s()) P&J ds, = c,,. 
-1 --I 

To calculate this integral the program for algebraic manipulation SCHOONSCHIP 
has been used. The computations have been carried out according the following 
steps: 

- Substitution (s - sO) + o. 
- Substitution 

f 

1+s 1 
v”lg-vdv= 

(1 +s)n+’ 
0 2 n+l 

I+++-& . 1 
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- Evaluation of 

z*=[l, s”lgf(l +s)ds 

by means of the recursion relation 

(n+ l)Z,=K,-nz,-,, 

where 

K =-1+(-l)” 
” n-t1 

and I,=Ko= -2. 

This identity can be obtained by integrating by parts, with lg f( 1 + S) as integrand 
factor. This step is fundamental if one wants to compute the coefficients c,, up to 
rr, m = 14. The coefficients d,, = l/c,, for n i-m > 0 are given in Table I. 

In the second case, referring to two adjacent sides, we can recall that 
P,(-1)=(-l)“, so that in order to eliminate the singularity at the point (s, s,,) = 
(1, 1 ), it merely suffices to compute 

3 

lg&(s-s,)(-l)“ds,=(-l)“(-8+8lg2). 

TABLE I 

Table of the Coefficients d,, = l/c,,. n = 0, l,..., 14, m = l,..., 14 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

1 3 45 210 630 1485 3003 
-1 9 90 350 945 2079 4004 

-3 18 150 525 1323 2772 
-6 30 225 735 1764 3564 

-10 45 315 980 2268 
-1s 63 420 1260 2853 

-21 84 540 1575 
-28 108 675 1925 

-36 135 825 
-45 165 990 

-55 198 
-66 234 

-78 

5460 

5148 

4455 

3465 

2310 

1170 

273 

- 105 

Note. Recall that the matrix of the coefficients is symmetric, that for n + m odd c,, = 0, and that 
c,= -6. 
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This correction, in spite of its simplicity, shows itself to be very important in 
eliminating the last sources of error. 
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